|
A waveguide filter is an electronic filter that is constructed with waveguide technology. Waveguides are hollow metal tubes inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass (the passband), while others are rejected (the stopband). Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting. Waveguide filters were developed during World War II to meet the needs of radar and electronic countermeasures, but afterwards soon found civilian applications such as use in microwave links. Much of post-war development was concerned with reducing the bulk and weight of these filters, first by using new analysis techniques that led to elimination of unnecessary components, then by innovations such as dual-mode cavities and novel materials such as ceramic resonators. A particular feature of waveguide filter design concerns the mode of transmission. Systems based on pairs of conducting wires and similar technologies have only one mode of transmission. In waveguide systems, any number of modes are possible. This can be both a disadvantage, as spurious modes frequently cause problems, and an advantage, as a dual-mode design can be much smaller than the equivalent waveguide single mode design. The chief advantages of waveguide filters over other technologies are their ability to handle high power and their low loss. The chief disadvantages are their bulk and cost when compared with technologies such as microstrip filters. There is a wide array of different types of waveguide filters. Many of them consist of a chain of coupled resonators of some kind that can be modelled as a ladder network of LC circuits. One of the most common types consists of a number of coupled resonant cavities. Even within this type, there are many subtypes, mostly differentiated by the means of coupling. These coupling types include apertures, irises, and posts. Other waveguide filter types include dielectric resonator filters, insert filters, finline filters, corrugated-waveguide filters, and stub filters. A number of waveguide components have filter theory applied to their design, but their purpose is something other than to filter signals. Such devices include impedance matching components, directional couplers, and diplexers. These devices frequently take on the form of a filter, at least in part. ==Scope== The common meaning of ''waveguide'', when the term is used unqualified, is the hollow metal kind, but other waveguide technologies are possible.〔Gibilisco & Sclater, (page 913 )〕 The scope of this article is limited to the metal-tube type. The post-wall waveguide structure is something of a variant, but is related enough to include in this article—the wave is mostly surrounded by conducting material. It is possible to construct waveguides out of dielectric rods,〔Yeh & Shimabukuro, page 1〕 the most well known example being optical fibres. This subject is outside the scope of the article with the exception that dielectric rod resonators are sometimes used ''inside'' hollow metal waveguides. Transmission line technologies such as conducting wires and microstrip can be thought of as waveguides,〔Russer, pages 131–132〕 but are not commonly called such and are also outside the scope of this article. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「waveguide filter」の詳細全文を読む スポンサード リンク
|